Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Transl Med ; 22(1): 254, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459588

ABSTRACT

BACKGROUND: Although hepatitis B virus (HBV) infection is a major risk factor for hepatic cancer, the majority of HBV carriers do not develop this lethal disease. Additional molecular alterations are thus implicated in the process of liver tumorigenesis. Since phosphatase and tensin homolog (PTEN) is decreased in approximately half of liver cancers, we investigated the significance of PTEN deficiency in HBV-related hepatocarcinogenesis. METHODS: HBV-positive human liver cancer tissues were checked for PTEN expression. Transgenic HBV, Alb-Cre and Ptenfl/fl mice were inter-crossed to generate WT, HBV, Pten-/- and HBV; Pten-/- mice. Immunoblotting, histological analysis and qRT-PCR were used to study these livers. Gp73-/- mice were then mated with HBV; Pten-/- mice to illustrate the role of hepatic tumor biomarker golgi membrane protein 73 (GP73)/ golgi membrane protein 1 (GOLM1) in hepatic oncogenesis. RESULTS: Pten deletion and HBV transgene synergistically aggravated liver injury, inflammation, fibrosis and development of mixed hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). GP73 was augmented in HBV; Pten-/- livers. Knockout of GP73 blunted the synergistic effect of deficient Pten and transgenic HBV on liver injury, inflammation, fibrosis and cancer development. CONCLUSIONS: This mixed HCC-ICC mouse model mimics liver cancer patients harboring HBV infection and PTEN/AKT signaling pathway alteration. Targeting GP73 is a promising therapeutic strategy for cancer patients with HBV infection and PTEN alteration.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , PTEN Phosphohydrolase , Animals , Humans , Mice , Carcinoma, Hepatocellular/pathology , Fibrosis , Hepatitis B/complications , Hepatitis B virus , Inflammation/pathology , Liver/pathology , Liver Neoplasms/pathology , Membrane Proteins/metabolism , Mice, Knockout , PTEN Phosphohydrolase/metabolism
2.
JMIR Public Health Surveill ; 10: e55327, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483459

ABSTRACT

BACKGROUND: Asthma has become one of the most common chronic conditions worldwide, especially among children. Recent findings show that the prevalence of childhood asthma has increased by 12.6% over the past 30 years, with >262 million people currently affected globally. The reasons for the growing asthma epidemic remain complex and multifactorial. OBJECTIVE: This study aims to provide an up-to-date analysis of the changing global and regional asthma prevalence, mortality, disability, and risk factors among children aged <20 years by leveraging the latest data from the Global Burden of Disease Study 2019. Findings from this study can help inform priority areas for intervention to alleviate the rising burden of childhood asthma globally. METHODS: The study used data from the Global Burden of Disease Study 2019, concentrating on children aged 0 to 14 years with asthma. We conducted an in-depth analysis of asthma, including its age-standardized prevalence, incidence, mortality, and disability-adjusted life years (DALYs), across diverse demographics, such as region, age, sex, and sociodemographic index, spanning 1990 to 2019. We also projected the future burden of the disease. RESULTS: Overall, in the Western Pacific Region, the age-standardized prevalence rate of asthma among children increased slightly, from 3898.4 cases per 100,000 people in 1990 to 3924 per 100,000 in 2019. The age-standardized incidence rate of asthma also increased slightly, from 979.2 to 994.9 per 100,000. In contrast, the age-standardized death rate of asthma decreased from 0.9 to 0.4 per 100,000 and the age-standardized DALY rate decreased from 234.9 to 189.7 per 100,000. At the country level, Japan experienced a considerable decrease in the age-standardized prevalence rate of asthma among children, from 6669.1 per 100,000 in 1990 to 5071.5 per 100,000 in 2019. Regarding DALYs, Japan exhibited a notable reduction, from 300.6 to 207.6 per 100,000. Malaysia also experienced a DALY rate reduction, from 188.4 to 163.3 per 100,000 between 1990 and 2019. We project that the burden of disease in countries other than Japan and the Philippines will remain relatively stable up to 2045. CONCLUSIONS: The study indicates an increase in the prevalence and incidence of pediatric asthma, coupled with a decrease in mortality and DALYs in the Western Pacific Region between 1990 and 2019. These intricate phenomena appear to result from a combination of lifestyle shifts, environmental influences, and barriers to health care access. The findings highlight that nations such as Japan have achieved notable success in managing asthma. Overall, the study identified areas of improvement in view of persistent disease burden, underscoring the need for comprehensive collaborative efforts to mitigate the impact of pediatric asthma throughout the region.


Subject(s)
Asthma , Epidemics , Child , Humans , Asthma/epidemiology , Cost of Illness , Health Services Accessibility , Japan , Infant , Child, Preschool , Adolescent
3.
J Glob Health ; 14: 04012, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38247557

ABSTRACT

Background: This study aims to delineate the burden of congenital birth defects (CBDs) in children under 14 years of age from 1990 to 2019, using an age-period-cohort framework to analyse data from the Global Burden of Disease Study (GBD). Methods: Data on prevalence cases, age-standardised prevalence rates (ASPRs), death cases, and age-standardised death rates (ASDRs) of congenital birth defects (CBDs) from 1990 to 2019 were obtained from GBD 2019. Using this data set, we conducted an age-period-cohort (APC) analysis to examine patterns and trends in mortality, prevalence, and disability-adjusted life years (DALYs) associated with CBDs, while exploring correlations with age, time periods, and generational birth cohorts. Furthermore, to quantify the temporal trends, we calculated the estimated annual percentage changes (EAPCs) for these parameters. Results: The global prevalence of CBDs decreased from 1404.22 to 1301.66 per 100 000 with an EAPC of -0.18% from 1990 to 2019. CBD mortality decreased by 42.52% between 1990 and 2019, with the global age-standardised death rate declining from 49.72 to 25.58 per 100 000. The age-standardised DALY rate decreased from 4529.16 to 2393.61 per 100 000. Prevalence declined most notably among older children. The risk of CBDs reached its lowest during adolescence (10-14 years) across all regions. The most recent period (2015-2019) showed a reduced risk of prevalence compared to 2000-2004. Earlier birth cohorts displayed declining tendencies followed by slight increases in risk. Conclusions: This study demonstrates encouraging global reductions in the burden of CBDs among children over the past three decades. Prevalence, mortality, and DALYs attributable to CBDs have exhibited downward trajectories, although regional disparities remain. APC analysis provides valuable insights to inform prevention and management strategies for pediatric CBDs.


Subject(s)
Global Burden of Disease , Perinatal Death , Adolescent , Female , Humans , Child , Disability-Adjusted Life Years , Cohort Studies
4.
Transl Res ; 268: 51-62, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38244769

ABSTRACT

Due to soared obesity population worldwide, hepatosteatosis is becoming a major risk factor for hepatocellular carcinoma (HCC). Undertaken molecular events during the progression of steatosis to liver cancer are thus under intensive investigation. In this study, we demonstrated that high-fat diet potentiated mouse liver AKT2. Hepatic AKT2 hyperactivation through gain-of-function mutation of Akt2 (Akt2E17K) caused spontaneous hepatosteatosis, injury, inflammation, fibrosis, and eventually HCC in mice. AKT2 activation also exacerbated lipopolysaccharide and D-galactosamine hydrochloride-induced injury/inflammation and N-Nitrosodiethylamine (DEN)-induced HCC. A positive correlation between AKT2 activity and SCD1 expression was observed in human HCC samples. Activated AKT2 enhanced the production of monounsaturated fatty acid which was dependent on SREBP1 upregulation of SCD1. Blockage of active SREBP1 and ablation of SCD1 reduced steatosis, inflammation, and tumor burden in DEN-treated Akt2E17K mice. Therefore, AKT2 activation is crucial for the development of steatosis-associated HCC which can be treated with blockage of AKT2-SREBP1-SCD1 signaling cascade.


Subject(s)
Lipid Metabolism , Liver Neoplasms , Proto-Oncogene Proteins c-akt , Stearoyl-CoA Desaturase , Sterol Regulatory Element Binding Protein 1 , Animals , Proto-Oncogene Proteins c-akt/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Fatty Liver/metabolism , Fatty Liver/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Mice, Inbred C57BL , Male , Diet, High-Fat/adverse effects
5.
Appl Microbiol Biotechnol ; 107(16): 5179-5189, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37395749

ABSTRACT

This study aimed to investigate the effects of salivary histatin 5 (Hst5) on Porphyromonas gingivalis (P. gingivalis) biofilms in vitro and in vivo and the possible mechanisms. In in vitro experiments, P. gingivalis biomass was determined by crystal violet staining. Polymerase chain reaction, scanning electron microscopy, and confocal laser scanning microscopy were used to determine the Hst5 concentration. A search for potential targets was performed using transcriptomic and proteomic analyses. In vivo experimental periodontitis was established in rats to evaluate the effects of Hst5 on periodontal tissues. Experimental results showed that 25 µg/mL Hst5 effectively inhibited biofilm formation, and increased concentrations of Hst5 increased the inhibitive effect. Hst5 might bind to the outer membrane protein RagAB. A combination of transcriptomic and proteomic analyses revealed that Hst5 could regulate membrane function and metabolic processes in P. gingivalis, in which RpoD and FeoB proteins were involved. In the rat periodontitis model, alveolar bone resorption and inflammation levels in periodontal tissues were reduced by 100 µg/mL Hst5. This study showed that 25 µg/mL Hst5 inhibited P. gingivalis biofilm formation in vitro by changing membrane function and metabolic process, and RpoD and FeoB proteins might play important roles in this process. Moreover, 100 µg/mL Hst5 inhibited periodontal inflammation and alveolar bone loss in rat periodontitis via its antibacterial and anti-inflammatory effects. KEY POINTS: • Anti-biofilm activity of histatin 5 on Porphyromonas gingivalis was investigated. • Histatin 5 inhibited Porphyromonas gingivalis biofilm formation. • Histatin 5 showed inhibitory effects on the occurrence of rat periodontitis.


Subject(s)
Periodontitis , Porphyromonas gingivalis , Rats , Animals , Histatins/metabolism , Histatins/pharmacology , Proteomics , Biofilms , Periodontitis/drug therapy , Periodontitis/microbiology , Inflammation
6.
Br J Oral Maxillofac Surg ; 61(6): 394-402, 2023 07.
Article in English | MEDLINE | ID: mdl-37308334

ABSTRACT

To investigate the relation between periodontal disease (PD) and oral squamous cell carcinoma (OSCC) we systematically searched records published up to August 2022. Odds ratios (OR) and relative risk (RR) with 95% confidence intervals (95% CI) were estimated to evaluate this relation, then sensitivity analysis was performed accordingly. Begg's test and Egger's test were used to detect publication bias. Out of 970 papers from several databases, 13 studies were included. Summary estimates showed that PD was positively associated with the prevalence of OSCC (OR = 3.28, 95% CI: 1.87 to 5.74), especially for severe PD (OR = 4.23, 95% CI: 2.92 to 6.13). No evident publication bias was revealed. No increased OSCC risk among patients with PD was shown according to the combined results (RR = 1.50, 95% CI: 0.93 to 2.42). Patients with OSCC exhibited significant differences in alveolar bone loss, clinical attachment loss, and bleeding on probing, when compared with controls. The systematic review and meta-analysis suggested that there was a positive association between PD and prevalence of OSCC. However, according to the current evidence, a causal relation is unclear.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Periodontal Diseases , Humans , Carcinoma, Squamous Cell/complications , Carcinoma, Squamous Cell/epidemiology , Squamous Cell Carcinoma of Head and Neck , Mouth Neoplasms/complications , Mouth Neoplasms/epidemiology , Periodontal Diseases/complications , Periodontal Diseases/epidemiology
7.
Sci Total Environ ; 874: 162366, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36848990

ABSTRACT

Compound drought and heatwave events (CDHEs) are more devastating than single drought or heatwave events and have gained widespread attention. However, previous studies have not investigated the impacts of the precipitation attenuation effect (PAE) (i.e., the effect of previous precipitation on the dryness and wetness of the current system is attenuated) and event merging (EM) (i.e., merging two CDHEs with short intervals into a single event). Moreover, few studies have assessed short-term CDHEs within monthly scales and their variation characteristics under different background temperatures. Here we propose a novel framework for assessing CDHEs on a daily scale and considering the PAE and EM. We applied this framework to mainland China and investigated the spatiotemporal variation of the CDHE indicators (spatial extent (CDHEspa), frequency (CDHEfre), duration (CHHEdur), and severity (CDHEsev)) from 1968 to 2019. The results suggested that ignoring the PAE and EM led to significant changes in the spatial distribution and magnitude of the CDHE indicators. Daily-scale assessments allowed for monitoring the detailed evolution of CDHEs and facilitated the timely development of mitigation measures. Mainland China experienced frequent CDHEs from 1968 to 2019 (except for the southwestern part of Northwest China (NWC) and the western part of Southwest China (SWC)), whereas, hotspot areas of CDHEdur and CDHEsev had a patchy distribution in different geographical subregions. The CDHE indicators were higher in the warmer 1994-2019 period than in the colder 1968-1993 period, but the rate of increase of the indicators was lower or there was a downward trend. Overall, CDHEs in mainland China have been in a state of remarkable continuous strengthening over the past half a century. This study provides a new quantitative analysis approach for CDHEs.

8.
ACS Appl Mater Interfaces ; 14(37): 42388-42401, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36094886

ABSTRACT

Tissue engineering technology provides a promising approach for large-scale bone reconstruction in cases of extensive chest wall defects. However, previous studies did not consider meticulous scaffold design specific to large-scale rib regeneration in terms of three-dimensional (3D) shape, proper porous structures, enough mechanical strength, and osteogenic microenvironments. Thus, there is an urgent need to develop an appropriate bone biomimetic scaffold (BBS) to address this problem. In this study, a BBS with controllable 3D morphology, appropriate mechanical properties, good biocompatibility and biodegradability, porous structure suitable for cell loading, and a biomimetic osteogenic inorganic salt (OIS) microenvironment was successfully prepared by integrating computer-aided design, 3D-printing, cast-molding, and freeze-drying technologies. The addition of the OIS in the scaffold substantially promoted ectopic bone regeneration in vivo, which might be attributed to the activation of osteogenic and angiogenic signaling pathways as well as upregulated expression of osteogenic genes. More importantly, dual long rib defects could be successfully repaired and medullary cavity recanalized by the rib-shaped mature cortical bone, which might be mediated by the activation of osteoclast signaling pathways. Thus, this paper presents a reliable BBS and proposes a new strategy for the repair of large-scale bone defects.


Subject(s)
Biomimetics , Tissue Scaffolds , Bone Regeneration , Osteogenesis , Printing, Three-Dimensional , Ribs , Steel , Tissue Engineering/methods , Tissue Scaffolds/chemistry
9.
Regen Med ; 17(9): 659-675, 2022 09.
Article in English | MEDLINE | ID: mdl-35703020

ABSTRACT

Cartilage defects trouble millions of patients worldwide and their repair via conventional treatment is difficult. Excitingly, tissue engineering technology provides a promising strategy for efficient cartilage regeneration with structural regeneration and functional reconstruction. Seed cells, as biological prerequisites for cartilage regeneration, determine the quality of regenerated cartilage. The proliferation, differentiation and chondrogenesis of seed cells are greatly affected by their type, origin and generation. Thus, a systematic description of the characteristics of seed cells is necessary. This article reviews in detail the cellular characteristics, research progress, clinical translation challenges and future research directions of seed cells while providing guidelines for selecting appropriate seed cells for cartilage regeneration.


Cartilage defects affect millions of patients worldwide and their repair via conventional treatment is quite difficult. Excitingly, tissue engineering technology provides a promising strategy for efficient cartilage regeneration. The seed cell, as a biological prerequisite for cartilage regeneration, determines the quality of regenerated cartilage. This article reviews in detail the cellular characteristics, research progress, clinical translation challenges and future research directions of various chondrocytes, chondroprogenitor cells and stem cells. Chondrocytes, especially elastic chondrocytes, could complete subcutaneous cartilage regeneration, whereas stem cells are superior for composite defects, allografts and cartilage defects caused by inflammation. In brief, this article provides a guide for selecting appropriate seed cells for cartilage regeneration.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , Cartilage , Cell Differentiation , Chondrocytes , Chondrogenesis , Humans , Regeneration , Tissue Engineering , Tissue Scaffolds
10.
Bioact Mater ; 13: 149-160, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35224298

ABSTRACT

Tissue-engineered cartilage regeneration by bone marrow stromal cells (BMSCs) is considered an ideal method. However, how to regulate BMSCs to regenerate specific types of cartilage remains unclear, which significantly limits its clinical translation and leads to suboptimal clinical effects. Herein, we systematically explored the role of native ear and articular cartilage niches on the differentiation fate of BMSCs and the type of regenerated cartilage. First, we prepared two types of acellular cartilage sheets (ACSs) and two types of chondrocytes. Then green fluorescent protein-labeled BMSCs were seeded on two types of ACSs with or without corresponding types of chondrocytes using a sandwich model and directed or cross-implanted them into native cartilage niches. After one year of in vivo culture, cell tracking and the results of histological results showed that the native cartilage niches were capable of regulating BMSCs regeneration into specific types of cartilage that were consistent with the cartilage types of the implanted sites. Furthermore, even when the type of niche formed by ACSs or the biomimetic cartilage niche constructed by specific types of ACSs and specific types of chondrocytes did not match with the native cartilage niche, the native cartilage niche continued to determine the type of cartilage regenerated by implanted BMSCs and chondrocytes. All our results provide sufficient evidence for specific types of cartilage regeneration using chondrogenic potential cells, such as mesenchymal stem cells and chondrocytes.

11.
Mol Metab ; 54: 101358, 2021 12.
Article in English | MEDLINE | ID: mdl-34710640

ABSTRACT

OBJECTIVE: Fibroblast growth factor 2 (FGF2) has been reported to play divergent roles in white adipogenic differentiation, however, whether it regulates thermogenesis of fat tissues remains largely unknown. We therefore aimed to investigate the effect of FGF2 on fat thermogenesis and elucidate the underlying mechanisms. METHODS: FGF2-KO and wild-type (WT) mice were fed with chow diet and high-fat diet (HFD) for 14 weeks. The brown and white fat mass, thermogenic capability, respiratory exchange ratio, and hepatic fat deposition were determined. In vitro experiments were conducted to compare the thermogenic ability of FGF2-KO- with WT-derived brown and white adipocytes. Exogenous FGF2 was supplemented to in vitro-cultured WT brown and ISO-induced beige adipocytes. The FGFR inhibitor, PPARγ agonist, and PGC-1α expression lentivirus were used with the aid of technologies including Co-IP, ChIP, and luciferase reporter assay to elucidate the mechanisms underlying the FGF2 regulation of thermogenesis. RESULTS: FGF2 gene disruption results in increased thermogenic capability in both brown and beige fat, supporting by increased UCP1 expression, enhanced respiratory exchange ratio, and elevated thermogenic potential in response to cold exposure. Thus, the deletion of FGF2 protects mice from high fat-induced adiposity and hepatic steatosis. Mechanistically, in vitro investigations indicated FGF2 acts in autocrine/paracrine fashions. Exogenous FGF2 supplementation inhibits both PGC-1α and PPARγ expression, leading to suppression of UCP1 expression in brown and beige adipocytes. CONCLUSIONS: These findings demonstrate that FGF2 is a novel thermogenic regulator, suggesting a viable potential strategy for using FGF2-selective inhibitors in combat adiposity and associated hepatic steatosis.


Subject(s)
Adipose Tissue, Beige/metabolism , Adipose Tissue, Brown/metabolism , Fatty Liver/metabolism , Fibroblast Growth Factor 2/metabolism , Thermogenesis , Adiposity , Animals , Fibroblast Growth Factor 2/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout
12.
Front Cell Dev Biol ; 9: 717462, 2021.
Article in English | MEDLINE | ID: mdl-34589485

ABSTRACT

Breast cancer (BC) is the most common cancer affecting women and the leading cause of cancer-related deaths worldwide. Compelling evidence indicates that microRNAs (miRNAs) are inextricably involved in the development of cancer. Here, we constructed a novel model, based on miRNA-seq and clinical data downloaded from The Cancer Genome Atlas (TCGA). Data from a total of 962 patients were included in this study, and the relationships among their clinicopathological features, survival, and miRNA-seq expression levels were analyzed. Hsa-miR-186 and hsa-miR-361 were identified as internal reference miRNAs and used to normalize miRNA expression data. A five-miRNA signature, constructed using univariate and multivariate Cox regression, was significantly associated with disease-specific survival (DSS) of patients with BC. Kaplan-Meier (KM) and receiver operating characteristic (ROC) analyses were conducted to confirm the clinical significance of the five-miRNA signature. Finally, a nomogram was constructed based on the five-miRNA signature to evaluate its clinical value. Cox regression analysis revealed that a five-miRNA signature was significantly associated with DSS of patients with BC. KM analysis demonstrated that the signature could efficiently distinguish high- and low-risk patients. Moreover, ROC analysis showed that the five-miRNA signature exhibited high sensitivity and specificity in predicting the prognosis of patients with BC. Patients in the high-risk subgroup who received adjuvant chemotherapy had a significantly lower incidence of mortality than those who did not. A nomogram constructed based on the five-miRNA signature was effective in predicting 5-year DSS. This study presents a novel five-miRNA signature as a reliable prognostic tool to predict DSS and provide theoretical reference significance for individualized clinical decisions for patients with BC.

13.
Front Mol Biosci ; 8: 664913, 2021.
Article in English | MEDLINE | ID: mdl-34395518

ABSTRACT

Pulmonary fibrosis is a group of progressive, fibrotic, and fatal lung diseases, and the role of autophagy in pulmonary fibrosis is controversial. In the current research, we dynamically observed a bleomycin-induced pulmonary fibrosis mouse model after 3, 7, 14, 21, and 28 days and investigated the expression of autophagy markers. We found that autophagy markers were not significantly changed on the indicated days in the mouse lung tissue. Then, RNA-Seq was used to analyze the gene expression and associated functions and pathways in fibrotic lung tissue on different days post-bleomycin. In addition, short time series expression miner (STEM) analysis was performed to explore the temporal post-bleomycin gene expression. Through STEM, continually up- or downregulated profiles did not demonstrate the critical role of autophagy in the development of fibrosis. Furthermore, gene ontology (GO) annotations showed that continually upregulated profiles were mainly related to fibrosis synthesis, extracellular space, and inflammation, while enriched pathways were mainly related to the PI3K-Akt signaling pathway, ECM-receptor interactions, and focal adhesion signaling pathway. For continually downregulated profiles, GO annotations mainly involved sarcomere organization, muscle contraction, and muscle fiber development. The enriched KEGG signaling pathways were the cAMP signaling pathway, cGMP-PKG signaling pathway, calcium signaling pathway, and cardiac muscle contraction. Moreover, we analyzed autophagy-related genes' expression in specific cells from a publicly available database of three human and one animal study of pulmonary fibrosis using single-cell sequencing technology. All results consistently demonstrated no critical role of autophagy in the pathogenesis of pulmonary fibrosis. In summary, autophagy may not critically and consistently change during the development of pulmonary fibrosis at different stages post-bleomycin in a mouse model. These continually up- or downregulated profiles, including gene profiles, and the corresponding functions and pathways may provide mechanistic insights into IPF therapy.

14.
Front Cell Dev Biol ; 9: 638115, 2021.
Article in English | MEDLINE | ID: mdl-33718376

ABSTRACT

Scaffold-free cartilage-sheet technology can stably regenerate high-quality cartilage tissue in vivo. However, uncontrolled shape maintenance and mechanical strength greatly hinder its clinical translation. Decalcified bone matrix (DBM) has high porosity, a suitable pore structure, and good biocompatibility, as well as controlled shape and mechanical strength. In this study, cartilage sheet was prepared into engineered cartilage gel (ECG) and combined with DBM to explore the feasibility of regenerating 3D cartilage with controlled shape and mechanical strength. The results indicated that ECG cultured in vitro for 3 days (3 d) and 15 days (15 d) showed good biocompatibility with DBM, and the ECG-DBM constructs successfully regenerated viable 3D cartilage with typical mature cartilage features in both nude mice and autologous goats. Additionally, the regenerated cartilage had comparable mechanical properties to native cartilage and maintained its original shape. To further determine the optimal seeding parameters for ECG, the 3 d ECG regenerated using human chondrocytes was diluted in different concentrations (1:3, 1:2, and 1:1) for seeding and in vivo implantation. The results showed that the regenerated cartilage in the 1:2 group exhibited better shape maintenance and homogeneity than the other groups. The current study established a novel mode of 3D cartilage regeneration based on the design concept of steel (DBM)-reinforced concrete (ECG) and successfully regenerated homogenous and mature 3D cartilage with controlled shape and mechanical strength, which hopefully provides an ideal cartilage graft for the repair of various cartilage defects.

15.
RSC Adv ; 11(22): 13164-13174, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-35423885

ABSTRACT

A series of thermal rearrangement (TR) copolymer membranes were prepared by the copolymerization of 9,9-bis(3-amino-4-hydroxyphenoxyphenyl) fluorene (BAHPPF), 9,9-bis(3-amino-4-hydroxyphenyl)fluorene (BAHPF) and 2,2'-bis(3,4'-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA), followed by thermal imidization and further thermal rearrangement. The effects of molar ratio of diamines on the structure and properties of copolymer membranes were studied. The copolymer precursors CP-4:6 and CP-5:5 exhibited excellent mechanical properties. The mechanical properties of precursor membranes rapidly decreased with the increase of thermal treatment temperatures, but the tensile strength of TRCP-4:6 still reached 21.2 MPa. In general, the gas permeabilities of TR copolymers increased with the increase of BAHPF content. Comparatively, TRCP-3:7 and TRCP-4:6 showed higher gas permeabilities, coupled with high O2/N2 and CO2/CH4 selectivities. Especially, the H2, CO2, O2, N2 and CH4 permeabilities of TRCP-4:6 reached 244.4, 269.0, 46.8, 5.20 and 4.60 Barrers respectively, and the selectivities for CO2/CH4 and O2/N2 were 58.48 and 9.00, which exceeded the 2008 upper bound. Therefore, these TR copolymer membranes are expected to be one of the candidate materials for gas separation applications.

16.
RSC Adv ; 12(2): 728-742, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35425112

ABSTRACT

The diamine monomer 3,3-bis[4-(3-hydroxy-4-amino-phenoxy)phenyl]phthalide (BHAPPP) was firstly synthesized by the nucleophilic substitution of 5-fluoro-2-nitrophenol and phenolphthalein, followed by a reduction reaction. A series of phthalide-containing poly(ether imide)s (PEI) were then prepared through the polycondensation of BHAPPP with six kinds of dianhydrides, including 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA), 3,3',4,4'-biphenyl tetracarboxylic dianhydride (BPDA), 4,4'-oxydiphthalic dianhydride (ODPA), 1,2,3,4-cyclobutane tetracarboxylic dianhydride (CBDA) and pyromellitic dianhydride (PMDA), as well as thermal imidization. After further thermal treatment, the corresponding thermal rearrangement (TR) membranes were obtained. Due to the existence of the phthalide lactone ring, the PEIs probably underwent TR and crosslinking simultaneously. With the increase of thermal treatment temperature, the mechanical properties of the TR membranes dramatically decreased, but the gas separation properties obviously increased. When the PEIs were treated at 450 °C for 1 h, the CO2, H2, O2, N2 and CH4 permeability of TR(BHAPPP-6FDA) reached 258.5, 190.5, 38.35, 4.25 and 2.15 Barrers, respectively. Meanwhile, the CO2/CH4 selectivity of 120.2 sharply exceeded the 2008 Robeson limit, and O2/N2 selectivity was 9.02, close to the 2015 upper limit. Therefore, the TR membranes derived from phthalide-containing PEIs exhibit superior gas separation performance, andare expected to be applied in the field of gas separation.

17.
Front Bioeng Biotechnol ; 9: 752677, 2021.
Article in English | MEDLINE | ID: mdl-34993184

ABSTRACT

The scarcity of ideal biocompatible scaffolds makes the regeneration of cartilage in the subcutaneous environment of large animals difficult. We have previously reported the successful regeneration of good-quality cartilage in a nude mouse model using the electrospun gelatin/polycaprolactone (GT/PCL) nanofiber membranes. The GT/PCL ratios were varied to generate different sets of membranes to conduct the experiments. However, it is unknown whether these GT/PCL membranes can support the process of cartilage regeneration in an immunocompetent large animal model. We seeded swine auricular chondrocytes onto different GT/PCL nanofiber membranes (GT:PCL = 30:70, 50:50, and 70:30) under the sandwich cell-seeding mode. Prior to subcutaneously implanting the samples into an autologous host, they were cultured in vitro over a period of 2 weeks. The results revealed that the nanofiber membranes with different GT/PCL ratios could support the process of subcutaneous cartilage regeneration in an autologous swine model. The maximum extent of homogeneity in the cartilage tissues was achieved when the G5P5 (GT: PC = 50: 50) group was used for the regeneration of cartilage. The formed homogeneous cartilage tissues were characterized by the maximum cartilage formation ratio. The extents of the ingrowth of the fibrous tissues realized and the extents of infiltration of inflammatory cells achieved were found to be the minimum in this case. Quantitative analyses were conducted to determine the wet weight, cartilage-specific extracellular matrix content, and Young's modulus. The results indicated that the optimal extent of cartilage formation was observed in the G5P5 group. These results indicated that the GT/PCL nanofiber membranes could serve as a potential scaffold for supporting subcutaneous cartilage regeneration under clinical settings. An optimum GT/PCL ratio can promote cartilage formation.

18.
Front Bioeng Biotechnol ; 9: 766363, 2021.
Article in English | MEDLINE | ID: mdl-34993186

ABSTRACT

Although cartilage regeneration technology has achieved clinical breakthroughs, whether auricular chondrocytes (AUCs) represent optimal seed cells to achieve stable cartilage regeneration is not clear. In this study, we systematically explore biological behaviors of human- and goat-derived AUCs during in vitro expansion as well as cartilage regeneration in vitro and in vivo. To eliminate material interference, a cell sheet model was used to evaluate the feasibility of dedifferentiated AUCs to re-differentiate and regenerate cartilage in vitro and in vivo. We found that the dedifferentiated AUCs could re-differentiate and regenerate cartilage sheets under the chondrogenic medium system, and the generated chondrocyte sheets gradually matured with increased in vitro culture time (2, 4, and 8 weeks). After the implantation of cartilage sheets with different in vitro culture times in nude mice, optimal neocartilage was formed in the group with 2 weeks in vitro cultivation. After in vivo implantation, ossification only occurred in the group with goat-regenerated cartilage sheet of 8 weeks in vitro cultivation. These results, which were confirmed in human and goat AUCs, suggest that AUCs are ideal seed cells for the clinical translation of cartilage regeneration under the appropriate culture system and culture condition.

19.
Acta Biomater ; 108: 87-96, 2020 05.
Article in English | MEDLINE | ID: mdl-32268237

ABSTRACT

Because of poor self-repair capacity, the repair of cartilage defect is always a great challenge in clinical treatment. In vitro cartilage regeneration provides a potential strategy for functional reconstruction of cartilage defect. Hydrogel has been known as an ideal cartilage regeneration scaffold. However, to date, in vitro cartilage regeneration based on hydrogel has not achieved satisfactory results. The current study explored the feasibility of in vitro 3D cartilage regeneration based on a moldable thermosensitive hydroxypropyl chitin (HPCH) hydrogel and its in vivo fate. The thermosensitive HPCH hydrogel was prepared and characterized. Goat auricular chondrocytes were encapsulated into the HPCH hydrogel to form a chondrocyte-hydrogel construct. The constructs were injected subcutaneously into nude mice or molded into different shapes for in vitro chondrogenic culture followed by in vivo implantation. The results demonstrated that the HPCH hydrogel possessed satisfactory gelation properties (gelation time < 18 s at 37 °C), biocompatibility (cell amount almost doubled within one week), and the ability to be applied as an injectable hydrogel for cartilage regeneration. All the constructs of in vitro culture basically maintained their original shapes (in vitro to initial: 110.8%) and displayed typical cartilaginous features with abundant lacunae and cartilage specific matrix deposition. These in vitro samples became more mature with prolonged in vivo implantation and largely maintained the original shape (in vivo to in vitro: 103.5%). These results suggested that the moldable thermosensitive HPCH hydrogel can serve as a promising scaffold for cartilage regeneration with defined shapes in vitro and in vivo. STATEMENT OF SIGNIFICANCE: Because of avascular and non-nervous characteristic of cartilage, in vitro regeneration plays an important role in reconstructing cartilage function. Hydrogel has been known as an ideal cartilage regeneration scaffold. However, to date, in vitro cartilage regeneration based on hydrogel has not achieved satisfactory results. The current study demonstrated that the chondrocyte-hydrogel construct generated by high density of chondrocytes encapsulated into a thermosensitive HPCH hydrogel could successfully regenerate in vitro typical cartilage-like tissue with defined shapes and further mature to form homogeneous cartilage with their original shapes after in vivo implantation. The current study indicated that the moldable thermosensitive HPCH hydrogel could serve as a promising scaffold for in vitro and in vivo cartilage regeneration with different shapes.


Subject(s)
Chitin , Hydrogels , Animals , Cartilage , Chondrocytes , Hydrogel, Polyethylene Glycol Dimethacrylate , Hydrogels/pharmacology , Mice , Mice, Nude , Regeneration , Tissue Engineering , Tissue Scaffolds
20.
RSC Adv ; 10(30): 17461-17472, 2020 May 05.
Article in English | MEDLINE | ID: mdl-35515577

ABSTRACT

The diamine monomer, 9,9-bis[4-(4-amino-3-hydroxylphenoxy)phenyl] fluorene (bis-AHPPF) was successfully synthesized according to our modified method. A series of hydroxyl-containing poly(ether-imide)s (HPEIs) were prepared by polycondensation of the bis-AHPPF diamine with six kinds of dianhydrides, including 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA), pyromellitic dianhydride (PMDA), 3,3',4,4'-biphenyl tetracarboxylic diandhydride (BPDA), 3,3',4,4'-oxydiphthalic anhydride (ODPA), 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-(hexafluoroisopropylidine)diphtalic anhydride (6FDA) followed by thermal imidization. The corresponding thermally rearranged (TR) membranes were obtained by solid state thermal treatment at high temperature under a nitrogen atmosphere. The chemical structure, and physical, thermal and mechanical properties of the HPEI precursors were characterized. The effects of heat treatment temperature and dianhydrides on the gas transport properties of the poly(ether-benzoxazole) (PEBO) membranes were also investigated. It was found that these HPEIs showed excellent thermal and mechanical properties. All the HPEI precursors underwent thermal conversion in a N2 atmosphere with low rearrangement temperatures. The gas permeabilities of the PEBO membranes increased with the increase of thermal treatment temperature. When HPEI-6FDA was treated at 450 °C for 1 h, the H2, CO2, O2 and N2 permeabilities of the membrane reached 239.6, 196.04, 46.41 and 9.25 Barrers coupled with a O2/N2 selectivity of 5.02 and a CO2/N2 selectivity of 21.19. In six TR-PEBOs, PEBO-6FDA exhibited the lowest rearrangement temperature and largest gas permeabilities. Therefore, thermally rearranged membranes from bis-AHPPF-based HPEIs are expected to be promising materials for gas separation.

SELECTION OF CITATIONS
SEARCH DETAIL
...